Universal Algebra for Termination of Higher-Order Rewriting

نویسنده

  • Makoto Hamana
چکیده

We show that the structures of binding algebras and Σmonoids by Fiore, Plotkin and Turi are sound and complete models of Klop’s Combinatory Reduction Systems (CRSs). These algebraic structures play the same role of universal algebra for term rewriting systems. Restricting the algebraic structures to the ones equipped with wellfounded relations, we obtain a complete characterisation of terminating CRSs. We can also naturally extend the characterisation to rewriting on meta-terms by using the notion of Σ-monoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rewriting Modulo in Deduction Modulo

We study the termination of rewriting modulo a set of equations in the Calculus of Algebraic Constructions, an extension of the Calculus of Constructions with functions and predicates defined by higher-order rewrite rules. In a previous work, we defined general syntactic conditions based on the notion of computable closure for ensuring the termination of the combination of rewriting and beta-re...

متن کامل

Proving Termination of Higher-order Rewrite Systems

This paper deals with termination proofs for Higher-Order Rewrite Systems (HRSs), introduced in [Nip9l, Nip93]. This formalism combines the computational aspects of term rewriting and simply typed lambda calculus. Our result is a proof technique for the termination of a HRS, similar to the proof technique "Termination by interpretation in a well-founded monotone algebra" described in [Zan93]. T...

متن کامل

Automated Termination Analysis for Term Rewriting

variable, 66algebra, 16weakly monotone, 16well-founded, 16argument filtering, 26reverse, 71arity, 10assignment, 16 carrier, 16collapsing, 13compatible, 50constant, 10context, 11closed under, 12cycle, 21 defined symbol, 12dependency graph, 21approximation, 37estimated, 37estimated*, 38dependency pair, 20symbol, 20dom...

متن کامل

Termination Proofs for Higher-order Rewrite Systems

This paper deals with termination proofs for Higher-Order Rewrite Systems (HRSs), introduced in [12]. This formalism combines the computational aspects of term rewriting and simply typed lambda calculus. The result is a proof technique for the termination of a HRS, similar to the proof technique \Termination by interpretation in a wellfounded monotone algebra", described in [8, 19]. The resulti...

متن کامل

Erasure and Termination in Higher-Order Rewriting

Two applications of the Erasure Lemma for first-order orthogonal term rewriting systems are: weak innermost termination implies termination, and weak normalization implies strong normalization for non-erasing systems. We discuss these two results in the setting of higher-order rewriting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005